A smart grid is a digitally enabled electrical grid that gathers, distributes, and acts on information about the behavior of all participants (suppliers and consumers) in order to improve the efficiency, importance, reliability, economics, and sustainability of electricity services.[citation needed]
Smart grid policy is organized in Europe as Smart Grid European Technology Platform.[1]Policy in the United States is described in 42 U.S.C. ch.152 subch.IX § 17381.
An electrical grid is not a single entity but an aggregate of multiple networks and multiple power generation companies with multiple operators employing varying levels of communication and coordination, most of which is manually controlled. Smart grids increase the connectivity, automation and coordination between these suppliers, consumers and networks that perform either long distancetransmission or local distribution tasks. This paradigm is changing as businesses and homes begin generating more wind and solar electricity, enabling them to sell surplus energy back to their utilities. Modernization is necessary for energy consumption efficiency, real time management of power flows and to provide the bi-directional metering needed to compensate local producers of power. Although transmission networks are already controlled in real time, many in the US and European countries are antiquated[26] by world standards, and unable to handle modern challenges such as those posed by the intermittent nature of alternative electricity generation, or continental scale bulk energy transmission. A smart grid is an umbrella term that covers modernization of both the transmission and distribution grids. The modernization is directed at a disparate set of goals including facilitating greater competition between providers, enabling greater use of variable energy sources, establishing the automation and monitoring capabilities needed for bulk transmission at cross continent distances, and enabling the use of market forces to drive energy conservation. Many smart grid features readily apparent to consumers such as smart meters serve the energy efficiency goal. The approach is to make it possible for energy suppliers to charge variable electric rates so that charges would reflect the large differences in cost of generating electricity during peak or off peak periods. Such capabilities allow load control switches to control large energy consuming devices such as water heaters so that they consume electricity when it is cheaper to produce. To reduce demand during the high cost peak usage periods, communications and metering technologies inform smart devices in the home and business when energy demand is high and track how much electricity is used and when it is used. It also gives utility companies the ability to reduce consumption by communicating to devices directly in order to prevent system overloads. An example would be a utility reducing the usage of a group of electric vehicle charging stations. To motivate them to cut back use and perform what is called peak curtailment or peak leveling, prices of electricity are increased during high demand periods, and decreased during low demand periods. It is thought that consumers and businesses will tend to consume less during high demand periods if it is possible for consumers and consumer devices to be aware of the high price premium for using electricity at peak periods. This could mean making trade-offs such as cooking dinner at 9 pm instead of 5 pm. When businesses and consumers see a direct economic benefit of using energy at off-peak times become more energy efficient, the theory is that they will include energy cost of operation into their consumer device and building construction decisions. See Time of day metering and demand response. According to proponents of smart grid plans,[who?] this will reduce the amount of spinning reserve that electric utilities have to keep on stand-by, as the load curve will level itself through a combination of "invisible hand" free-market capitalism and central control of a large number of devices by power management services that pay consumers a portion of the peak power saved by turning their devices off. Before examining particular technologies, a proposal can be understood in terms of what it is being required to do. The governments and utilities funding development of grid modernization have defined the functions required for smart grids. According to theUnited States Department of Energy's Modern Grid Initiative report,[30] a modern smart grid must: Using real-time information from embedded sensors and automated controls to anticipate, detect, and respond to system problems, a smart grid can automatically avoid or mitigate power outages, power quality problems, and service disruptions.[citation needed]Technology such as Fault Detection Isolation and Restoration (FDIRTM) can be used in conjunction with protective relays to automatically detect and isolate a fault, and then restore power to as many customers as possible. This will greatly improve the reliability of the electrical distribution network. As applied to distribution networks, there is no such thing as a "self healing" network. If there is a failure of an overhead power line, given that these tend to operate on a radial basis (for the most part) there is an inevitable loss of power. In the case of urban/city networks that for the most part are fed using underground cables, networks can be designed (through the use of interconnected topologies) such that failure of one part of the network will result in no loss of supply to end users. A fine example of an interconnected network using zoned protection is that of the Merseyside and North Wales Electricity Board (MANWEB). It is envisioned that the smart grid will likely have a control system that analyzes its performance using distributed, autonomousreinforcement learning controllers that have learned successful strategies to govern the behavior of the grid in the face of an ever changing environment such as equipment failures. Such a system might be used to control electronic switches that are tied to multiple substations with varying costs of generation and reliability.[31][edit]What a smart grid is
[edit]Modernizes both transmission and distribution
[edit]Peak curtailment/leveling and time of use pricing
[edit]Smart grid functions
[edit]Self-healing
Sent from my iPad
No comments:
Post a Comment